I bet Kurt Von Haller made more money selling his book than he did playing roulette
Dec 19, 2018 Hello, I am new in this forum and would like to ask a question regarding European Roulette. (Single Zero Roulette) In the Roulette Lexikon from Kurt von Haller he writes, that the last open number should show up on average after 132 spins. Von Kurt von Haller (Autor) Alle Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden. Preis Neu ab. Zugleich Lehrbuch und Tabellenwerk der Wahrscheinlichkeitsmathematik des Rouletts 5,0 von 5 Sternen 2. Gebundene Ausgabe.
If the question is how long will it take for every number to appear in double-zero roulette, the answer is 160.6602765, on average. This is the sum of the inverse of every integer from 1 to 38.
the OP questions 37. Where it came from# of numbers | average # of spins | cumulative sum |
---|---|---|
1 | 1 | 1 |
2 | 1.027777778 | 2.027777778 |
3 | 1.057142857 | 3.084920635 |
4 | 1.088235294 | 4.173155929 |
5 | 1.121212121 | 5.29436805 |
6 | 1.15625 | 6.45061805 |
7 | 1.193548387 | 7.644166437 |
8 | 1.233333333 | 8.877499771 |
9 | 1.275862069 | 10.15336184 |
10 | 1.321428571 | 11.47479041 |
11 | 1.37037037 | 12.84516078 |
12 | 1.423076923 | 14.2682377 |
13 | 1.48 | 15.7482377 |
14 | 1.541666667 | 17.28990437 |
15 | 1.608695652 | 18.89860002 |
16 | 1.681818182 | 20.58041821 |
17 | 1.761904762 | 22.34232297 |
18 | 1.85 | 24.19232297 |
19 | 1.947368421 | 26.13969139 |
20 | 2.055555556 | 28.19524694 |
21 | 2.176470588 | 30.37171753 |
22 | 2.3125 | 32.68421753 |
23 | 2.466666667 | 35.1508842 |
24 | 2.642857143 | 37.79374134 |
25 | 2.846153846 | 40.63989519 |
26 | 3.083333333 | 43.72322852 |
27 | 3.363636364 | 47.08686488 |
28 | 3.7 | 50.78686488 |
29 | 4.111111111 | 54.897976 |
30 | 4.625 | 59.522976 |
31 | 5.285714286 | 64.80869028 |
32 | 6.166666667 | 70.97535695 |
33 | 7.4 | 78.37535695 |
34 | 9.25 | 87.62535695 |
35 | 12.33333333 | 99.95869028 |
36 | 18.5 | 118.4586903 |
37 | 37 | 155.4586903 |
# of numbers | average # of spins | cumulative sum |
---|---|---|
1 | 1 | 1 |
2 | 1.027027027 | 2.027027027 |
3 | 1.055555556 | 3.082582583 |
4 | 1.085714286 | 4.168296868 |
5 | 1.117647059 | 5.285943927 |
6 | 1.151515152 | 6.437459079 |
7 | 1.1875 | 7.624959079 |
8 | 1.225806452 | 8.85076553 |
9 | 1.266666667 | 10.1174322 |
10 | 1.310344828 | 11.42777702 |
11 | 1.357142857 | 12.78491988 |
12 | 1.407407407 | 14.19232729 |
13 | 1.461538462 | 15.65386575 |
14 | 1.52 | 17.17386575 |
15 | 1.583333333 | 18.75719908 |
16 | 1.652173913 | 20.409373 |
17 | 1.727272727 | 22.13664572 |
18 | 1.80952381 | 23.94616953 |
19 | 1.9 | 25.84616953 |
20 | 2 | 27.84616953 |
21 | 2.111111111 | 29.95728064 |
22 | 2.235294118 | 32.19257476 |
23 | 2.375 | 34.56757476 |
24 | 2.533333333 | 37.1009081 |
25 | 2.714285714 | 39.81519381 |
26 | 2.923076923 | 42.73827073 |
27 | 3.166666667 | 45.9049374 |
28 | 3.454545455 | 49.35948285 |
29 | 3.8 | 53.15948285 |
30 | 4.222222222 | 57.38170508 |
31 | 4.75 | 62.13170508 |
32 | 5.428571429 | 67.56027651 |
33 | 6.333333333 | 73.89360984 |
34 | 7.6 | 81.49360984 |
35 | 9.5 | 90.99360984 |
36 | 12.66666667 | 103.6602765 |
37 | 19 | 122.6602765 |
38 | 38 | 160.6602765 |
If the question is how long will it take for every number to appear in double-zero roulette, the answer is 160.6602765, on average. This is the sum of the inverse of every integer from 1 to 38.
(160.66 is the harmonic series up to 38 times 38; using 37 for single zero roulette it is is 155)
being specific using pari/gp calculator found hereThe sum of the inverse of every integer from 1 to 38 is 4.2279020133. Using the inverse of every integer, it would take like 10^70 of them to get to 160. (160.66 is the harmonic series up to 38 times 38; using 37 for single zero roulette it is is 155)
the OP questions 37. Where it came from
that is just 1/p where p=1/37
The average is not the mode (The 'mode' is the value that occurs most often)
or median (The 'median' is the 'middle' value or close to 50%)
median = spin 147 @ 0.501522154
mode = 133 @ 0.0106293156
0.027 | 0.973 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0.0541 | 0.9459 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0.0811 | 0.9189 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0.1081 | 0.8919 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0.1351 | 0.8649 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0.1622 | 0.8378 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0.1892 | 0.8108 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2162 | 0.7838 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2432 | 0.7568 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2703 | 0.7297 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2973 | 0.7027 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3243 | 0.6757 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3514 | 0.6486 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3784 | 0.6216 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.4054 | 0.5946 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.4324 | 0.5676 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.4595 | 0.5405 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.4865 | 0.5135 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5135 | 0.4865 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5405 | 0.4595 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5676 | 0.4324 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5946 | 0.4054 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.6216 | 0.3784 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.6486 | 0.3514 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.6757 | 0.3243 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.7027 | 0.2973 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.7297 | 0.2703 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.7568 | 0.2432 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.7838 | 0.2162 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8108 | 0.1892 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8378 | 0.1622 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8649 | 0.1351 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8919 | 0.1081 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9189 | 0.0811 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9459 | 0.0541 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.973 | 0.027 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
I agree on the median. Here is my transition matrix.
to point out little differences in building a transition matrix (both are correct, one needs some special attention after calculations)